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Extended Abstract 

 
The ready availability of vast quantities of data has driven the need for data mining algorithms 
that can discover patterns, correlations and changes in the data.  The amount and high 
dimensionality of the data make data mining an important application for high performance 
computing [Joshi, 2002]. The mathematical and interactive nature of many of the data mining 
algorithm, makes it natural to use a language like MATLAB both to design algorithms and for 
post-processing of the results. Recently, Kepner [2002] has developed a system, called 
MatlabMPI, which implements the six basic functions of the Message Passing Interface (MPI) 
standard in MATLAB, and thus allows any Matlab program to exploit multiple processors. This 
has motivated us to develop a parallel data mining toolbox that is based on MatlabMPI. 
Implementations of a parallel clustering algorithm and a parallel classification algorithm have 
been completed, and other functions are currently under development.  
 
We present two parallel implementations of K-Means clustering using MatlabMPI in this poster. 

1. Master-Slave Method. In this approach there is a main node (Master) that performs data 
distribution, convergence check and centroid update. The slave processors are used only 
to calculate the centroids of their own local data. The algorithm is as follows: 

a. The processor with rank 0 distributes the data & initial random centroids to the 
non-rank 0 processors. 

b. All other processors receive the data and compute the centroids for their local data 
(using Serial K-Means clustering).  

c. The non-rank 0 processors send their local clustered data to the rank 0 processor. 
d. The rank 0 processor receives the data sent by each processor and recomputes the 

centroids. 
e. The rank 0 processor checks for convergence condition. If convergence condition 

is not reached, then it sends the updated centroids to the other processors and 
steps 2 & 3 are repeated. This process is repeated until the convergence condition 
is reached. If convergence condition is reached, then the rank 0 node sends the 
status bit informing the non-rank 0 processors to exit Matlab. 

 
2. Peer-to-Peer Method. In this approach the Rank 0 node, after initial data distribution, is 

used like any other node for clustering data. All the processors (including the main node) 
inter-communicate to update centroids and check for convergence condition locally. The 
algorithm is as follows: 

a. The processor with rank '0' distributes the data & initial random centroids to rest 
of the processors. 
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b. All the processors calculate the centroids for their local data, using Serial KMeans 
clustering. 

c. All the processors send their local cluster data to rest of the processors. 
d. All the processors receive the data sent by other processors and recompute the 

centroids locally. 
e. Each processor checks for convergence condition. If convergence condition is not 

reached, then steps 2 & 3 are repeated. This process is repeated till convergence 
condition is reached. 

 
Figure 2 compares the two MatlabMPI implementation of K-Means clustering with the Serial 
implementation. From Fig. 2 it is observed that the difference in the time taken by serial process 
and that taken by the two MatlabMPI implementations increases as the number of centroids to be 
clustered or the number of data points to be clustered increases. Moreover, both the parallel 
implementations take nearly the same amount of time.  
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Motivation

• Today, the amount of data that is collected from sensors and   
computerized transactions is huge.
• Data Mining algorithms arise in many different fields and typically 
are used to search through this data to look for patterns.
• Parallel data mining algorithms can help handle the huge 
datasets in a timely manner.

DATA MINING

Remote
Sensing

Crime 
Prevention

Defense and
Homeland
security

Fraud detection



Typical Data Mining Tasks

• Clustering.
• Classification.
• Association Rules.
• Regression.
• Pattern Recognition

We will consider only Clustering and Classification 
in this presentation.



MatlabMPI Overview

The latest MatlabMPI information, 
downloads, documentation, and 
information may be obtained from:

http://www.ll.mit.edu/MatlabMPI



Parallelization using MPI

• The Message Passing Interface (MPI) 
is a general method of parallelization 
by including explicit calls within the 
code to a library for exchanging 
messages between the processing 
elements.
– MPICH

– Implementation of Message Passing 
Interface standard for C, C++, Fortran77,       
Fortran90.

– MatlabMPI
– A Matlab implementation of MPI.



MPI & MATLAB
• Message Passing Interface (MPI):

– A message-passing library specification.
– Specific libraries available for almost every kind of 

HPC platform: shared memory SMPs, clusters, 
NOWs, Linux, Windows.

– Fortran, C, C++ bindings.
– Widely accepted standard for parallel computing.

• MATLAB:
– Integrated computation, visualization, programming, 

and programming environment.
– Easy matrix based notation, many toolboxes, etc
– Used extensively for technical and scientific 

computing.
– Currently: mostly SERIAL code.



What is MatlabMPI?

• It is a MATLAB implementation of the MPI standards 
that allows any MATLAB program to exploit multiple 
processors.

• It implements, the basic MPI functions that are the 
core of the MPI point-to-point communications with 
extensions to other MPI functions. (Growing)

• MATLAB look and feel on top of standard MATLAB file 
I/O.

• Pure M-file implementation: about 100 lines of 
MATLAB code.

• It runs anywhere MATLAB runs.
• Principal developer: Dr. Jeremy Kepner (MIT Lincoln 

Laboratory)



General Requirements

• As MatlabMPI uses file I/O for communication, 
a common file system must be visible to 
every machine/processor.

• On shared memory platforms: single MATLAB 
license is enough since any user is allowed to 
launch many MATLAB sessions.

• On distributed memory platforms: one 
MATLAB license per machine / node. 

• Currently Unix based platforms only, but 
Windows support coming soon.



Basic Concepts
• Basic Communication:

– Messages: MATLAB variables transferred 
from one processor to another 

– One processor sends the data, another 
receives the data

– Synchronous transfer: call does not return 
until the message is sent or received

– SPMD model: usually MatlabMPI programs 
are parallel SPMD programs. The same 
program is running on different 
processors/data.



Communication architecture

• Receiver waits until it detects the existence of the lock 
file.

• Receiver deletes the data and lock file, after it loads the 
variable from the data file.

load

detect

Sender

Variable Data file
save

create
Lock file

Variable

ReceiverShared file 
system



Possible modifications/customizations

• ssh vs rsh.
• Path variables.
• System dependent information 

required to run MATLAB. 



Data Mining Toolbox: Clustering
• Clustering divides the data into disjoint subsets based on a 

similarity measure.
• Each subset (cluster) is characterized by its centroid.

– Training data is used to estimate the centroids.
• K-Means is a commonly used clustering algorithm.

– The number of clusters is assumed to be known apriori.

Voronoi Diagram
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Parallel K-Means Clustering

• We have considered two approaches:
– Master- Slave Method– The rank-0 

processor determines when 
clustering is done.

– Peer-to-Peer Method – All the 
processing elements communicate 
among themselves to decide when 
clustering is done.



Master – Slave Method
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Peer-to-Peer Method
Rank–n Processor Other Processors

Receive data and 
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Communication And Compute Times
• Consider clustering of N vectors of dimension D into K 

clusters. Assume that clustering takes L iterations through 
the data, and P processors are used.

• Serial Method
– Communication Time – N/A
– Communication Data Size – N/A
– Compute Time – O(NKL)

• Master Slave Method
– Communication Time – (N-1 )*(P+1) TMPI_Send + (N-1)*P TMPI_Recv
– Communication Data size 

• Initial – (N+K)/(P-1)
• Per loop = K

– Compute Time / Processor – O((N/(P-1))K)
• Peer-to-Peer Method

– Communication Time – (N )* (P) (TMPI_Send + TMPI_Recv).
– Communication Data size 

• Initial – (N+K)/(P-1)
• Per loop = K

– Compute Time / Processor – O((N/P)K)



Parallelization Effectiveness
• We studied the effects of following parameter 

variations on the Master-Slave parallel K-means 
algorithm
– Number of data points.

• To observe the effect of increase in total data size.
– Number of centroids.
– Scalability.

• To observe the effect of change in number of 
processing elements.



Effect of varying number of data points
• Data Set

•Number of data points: 1M –
16M
•Number of centroids: 30
•Number of processors: 16
•Dimensionality of data: 3

• As number of data points is increased 
speed up of parallel process over serial 
process increases.

Tested on SUN E10000  - 64 Ultrasparc II



Effect of varying number of centroids
• Data Set

Number of data points – 0.4M
Number of centroids – varied
Number of processors – 16
Dimensionality - 8

• Effect of increase in number of 
centroids with constant number of data 
points

•The number of data points per process is 
constant.
• Speed up observed since compute time 
is of the order of NK.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors



Scalability Results
• As number of processors is increased the time taken 

decreases
– number of data points: 0.2M
– number of clusters: 30 
– Dimensionality: 3

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC



Dependence on data size

• The decrease in time as the number of 
processors is increased is not true for all 
cases

• Data Set for figure :
• Number of data points: 1M
• Number of clusters: 16
• Dimensionality: 8

• For 32 processors increase in time taken 
to send data is greater than the decrease 
in computation and receive time.

• Rank-0 needs to write 31 files to 
send data to other processors.

• Using MPI_Bcast instead of MPI_Send
shows scalability for 32 processors also, 
but overall time taken is more.

OSC IA32 Cluster distributed/shared memory, 64 compute nodes with two 1.533 GHz AMD Athlon MP processors



Effect of MPI_Bcast
• Time taken for parallel process decreases 
as number of processors is increased.
• For 3M the time taken decreases as 
number of processors is increased.
• Observe for ~1M

•time taken by 48 processors > time 
taken by 32 processors

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC



Why this behavior with MPI_Bcast?
• Time taken to read data from 47 processors is 
reduced 
• Time taken to distribute the data is modestly 
increased.
• But Rank-0 processor receives data from 47 
processors and this time increases significantly

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC



Conclusion 

• For K-Means Clustering
– Speedup is observed as number of data points 

is increased.
– Speedup is observed as number of centroids 

is increased
– For given data size as the number of 

processors is increased time taken decreases 
only to the point that the increase in 
communication cost overshadows the 
decrease in computation cost

• The advantage of using MatlabMPI is 
observed if data size is large.



Data Mining Toolbox: Classification

Classification and Regression Tree 
(CART)

• Classification Tree
– A tree structured classifier obtained by 

systematic splitting of training data 
samples using attribute values.

• Regression Tree
– A tree structured model to predict 

values (get function description) of a 
continuous valued variable based on 
values of other variables.



Classification Tree

• A tree structured classifier is built in two 
phases:

1) Growth Phase : In this the tree is built by 
recursively partitioning the data until a threshold 
condition is reached.
2) Prune Phase : If the tree obtained in the growth 
phase is too large or too small then the 
misclassification rate will be high as compared to 
the right sized tree. The pruning of the tree is done 
to obtain  a right sized tree.

• Only the Growth Phase of CART has been 
parallelized.



Example

• We explain the steps to build a  
classification tree using a smaller 
example.

• Training data
– Classes – 3
– Attributes – 3

• Size of training data (Elements per class)
– Class 1 = 3
– Class 2  = 5
– Class 3 = 7

3011

201 0

1000

ClassAttr3Attr2Attr1



Sequential Classification tree

• Steps:
1. The selection of the splits.
2. The decisions when to declare a node 
terminal or to continue splitting it.
3. The assignment of each terminal node to a 
class.



Selection of Splits
• Split Question (X-attribute, C-integer value)

– continuous attributes : {Is X<C?} 
– categorical attributes : {Is X=C?}

• In above example Q- {Is X=0?)
• Split Criterion:

Best split minimizes impurity at a node
– eg: Gini index is given by:

where pj is the proportion of class ‘j’ at node ‘t’.
• At a node with ‘n’ elements if split ‘S’ divides the data into 

S1 (n1 elements) and S2 (n2 elements)

• The split that maximizes              is selected to be the best
split.

∑−=
j jpti 21)(
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))2((2))1((1)(
nn
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Splitting the main node
• Gini Index at root node 

– Count matrix for each attribute
– If attribute value – 0 then data goes to left node
– Attribute –1 

– Attribute - 2

– Attribute – 3

• The best splitting attribute is 1 since it has minimum gini
index.

7001
0530
C-3C -2C-1Value

0001

7530
C-3C -2C-1Value

0031
7500
C-3C -2C-1Value

Gini Index:  n1=8,n2=7
gini(s1)=0.46857
Gini(s2)=0
Ginisplit=0.25

Gini Index:  n1=12,n2=3
gini(s1)=0
gini(s2)=0.486
Ginisplit=0.388

No use splitting with this 
attribute since n2=0



Split Tree

7Count
3Class

X
Complete 
Training 
Data Set

Attribute  1 = 1Attribute 1 = 0

X1 X2

X3

3
1

5Count
2Class

X4

Attribute  2 = 0 Attribute  2 = 1

5Count
2Class

3Count
1Class



Serial Growth Phase - contd.
• Decision to stop splitting

– A node is decided to be a terminal node if the 
Gini index is lower than a threshold.

– Splitting is stopped at node ‘t’ if

Or if the node is pure (as in above example.)

• Assign class to each terminal node.
– Class j is assigned to terminal node        if 

β<∆
∈

),(max tsi
Ss

~
Tt ∈

argmax ( | )j p i t
i

=

.



Parallel CART
(For Categorical Attributes)

1. Suppose the size of the given data set is N 
and number of processors is P.

2. The rank-0 processor
• Reads the training data 
• Distributes the data equally among all the 

processors.
3. All other processors

• Calculate and send the count matrices for all 
attributes.

4. Rank-0 processor
• Receives count matrices
• Finds best splitting attribute



Parallel CART –
contd.

5. Rank-0 process
• Stops if all terminal nodes are pure. 
• Else sends best splitting attribute to all other 

processors.
6. All other processors 

• Split the data into the left and right node 
using the best splitting attribute.

• Steps 3-6 are repeated for each of the leaves.



Effects Of Parallelization of categorical 
CART

• We studied the performance of the parallel 
algorithm with the variation in number of 
processing  elements.
– As the number of processors is increased the 

number of training samples per processor 
decreases.

– Time taken per processor decreases hence 
total time taken decreases.



Scalability Results
• Time taken to get classification tree 
using 0.3M and 0.1M training data points. 
Number of attributes: 7
Number of classes: 10
• Serial process takes very long.

For 0.3M data points with 32 
processors, speedup is about 845

• But for number of processors greater 
than 32 time taken increases

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC



Reason For Increase In Time
Increase in time taken to send messages is greater than 
decrease in computation time

Tested on distributed/shared memory hybrid system Dual processor - 1.53GHz AMD Athlon 1800MP CPUs at OSC



Conclusions

• Parallel processing takes less time 
than serial process 

• For large data sizes the increase in 
communication cost is less than the 
decrease in calculation cost.

• Parallel CART using MatlabMPI can 
be used with very large data sets



Future Work

• Optimize the use of MPI_Bcast.
• Generalize CART algorithm for 

continuous type of attributes.
• Parallelize Prune Phase.
• Add Support Vector Machines to the 

parallel data mining toolbox.
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